Image Search
Build multimodal search applications that understand both images and text using CLIP embeddings. Perfect for e-commerce, content management, and visual discovery.
Setup Image Search
from pytidb import Field, TableModel, DistanceMetric
from pytidb.integrations import embed_fn
from typing import Optional, List
class Pet(TableModel):
__tablename__ = "pets"
id: int = Field(primary_key=True)
breed: str = Field()
image_uri: str = Field()
image_name: str = Field()
image_vec: Optional[List[float]] = embed_fn.VectorField(
distance_metric=DistanceMetric.L2,
source_field="image_uri",
source_type="image", # Specify image processing
)
# Create table
table = db.create_table(schema=Pet, if_exists="overwrite")
Text-to-Image Search
Search for images using natural language descriptions:
# Insert image data
pets_data = [
{
"breed": "Golden Retriever",
"image_uri": "https://example.com/golden-retriever.jpg",
"image_name": "fluffy_dog.jpg"
},
{
"breed": "Persian Cat",
"image_uri": "https://example.com/persian-cat.jpg",
"image_name": "white_cat.jpg"
}
]
table.insert_many(pets_data)
# Search images with text
results = (
table.search(query="fluffy orange cat")
.distance_metric(DistanceMetric.L2)
.limit(5)
.to_list()
)
for result in results:
print(f"Breed: {result.breed}")
print(f"Image: {result.image_name}")
print(f"Similarity Score: {result.distance}")
Image-to-Image Search
Find similar images by uploading a reference image:
def find_similar_images(reference_image_path: str, limit: int = 10):
# Search using image as query
results = (
table.search_by_image(reference_image_path)
.distance_metric(DistanceMetric.COSINE)
.limit(limit)
.to_list()
)
return results
Advanced Multimodal Queries
Combine Text and Visual Filters
class Product(TableModel):
__tablename__ = "products"
id: int = Field(primary_key=True)
name: str = Field()
description: str = Field()
price: float = Field()
category: str = Field()
image_uri: str = Field()
image_vec: List[float] = embed_fn.VectorField(
source_field="image_uri",
source_type="image"
)
text_vec: List[float] = embed_fn.VectorField(
source_field="description"
)
# Multi-modal search with filters
def search_products(
text_query: str = None,
image_query: str = None,
category: str = None,
price_range: tuple = None
):
if text_query and image_query:
# Hybrid multimodal search
results = table.search_multimodal(
text=text_query,
image=image_query,
fusion_method="weighted",
text_weight=0.6,
image_weight=0.4
)
elif text_query:
results = table.search(text_query, field="description")
elif image_query:
results = table.search_by_image(image_query)
# Apply filters
if category:
results = results.filter(Product.category == category)
if price_range:
min_price, max_price = price_range
results = results.filter(
Product.price.between(min_price, max_price)
)
return results.limit(20).to_list()
Working with Different Image Formats
# Support various image sources
image_sources = [
"https://example.com/image.jpg", # URL
"/path/to/local/image.png", # Local file
"...", # Base64 data URL
open("image.jpg", "rb").read() # Raw bytes
]
for image_source in image_sources:
results = table.search_by_image(image_source).limit(5).to_list()
Performance Optimization
Batch Image Processing
# Process multiple images efficiently
image_batch = [
{"id": 1, "image_uri": "image1.jpg"},
{"id": 2, "image_uri": "image2.jpg"},
{"id": 3, "image_uri": "image3.jpg"}
]
# Embeddings are computed automatically during insertion
table.insert_many(image_batch)
Caching and CDN Integration
class OptimizedImage(TableModel):
__tablename__ = "optimized_images"
id: int = Field(primary_key=True)
original_uri: str = Field()
thumbnail_uri: str = Field() # For faster preview
cdn_uri: str = Field() # CDN optimized version
image_vec: List[float] = embed_fn.VectorField(
source_field="cdn_uri", # Use CDN for embeddings
source_type="image"
)
width: int = Field()
height: int = Field()
file_size: int = Field()
Use Cases
- E-commerce: "Find shoes similar to this image"
- Content Management: "Locate all photos with mountains"
- Social Media: "Discover similar lifestyle images"
- Medical Imaging: "Find similar scan patterns"