Quick Start Guide
Get up and running with AI-powered database applications in minutes. This guide will walk you through creating your first intelligent application.
Installation
Install your database client library:
pip install your-database-library
Basic Setup
import database_library
from database_library import Field, TableModel
from database_library.integrations import embed_fn
# Connect to your database instance
db = database_library.connect("your-connection-string")
# Define your first AI table
class Article(TableModel):
__tablename__ = "articles"
id: int = Field(primary_key=True)
title: str = Field()
content: str = Field()
content_vec: list[float] = embed_fn.VectorField(
source_field="content",
)
# Create the table
table = db.create_table(schema=Article, if_exists="overwrite")
Your First Semantic Search
# Insert some sample data
articles = [
{"title": "AI in Healthcare", "content": "Machine learning is revolutionizing medical diagnosis..."},
{"title": "Future of Transportation", "content": "Autonomous vehicles are changing how we travel..."},
{"title": "Climate Change Solutions", "content": "Renewable energy technologies are advancing rapidly..."}
]
table.insert_many(articles)
# Perform semantic search
results = table.search("medical AI applications").limit(5).to_list()
for result in results:
print(f"Title: {result.title}")
print(f"Content: {result.content[:100]}...")
print(f"Relevance Score: {result.distance}")
print("---")
Next Steps
- Vector Search → - Learn advanced vector search techniques
- Hybrid Search → - Combine vector and text search
- Image Search → - Work with multimodal embeddings